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ABSTRACT 
This paper proposes and demonstrates a cascaded predictive 

control strategy that quantifies and uses longitudinal and lateral 
tire force saturation for directional stability control of road 
vehicles. Saturation is explicitly defined and computed as the 
deficiency of a tire to generate a linearly increasing force in 
either the lateral or longitudinal direction. The optimal 
management of lateral saturation levels is set as the objective 
for an upper level controller, while the optimal management of 
longitudinal saturation among all tires is set as the objective for 
a lower level driving/braking torque distribution controller. 
This cascaded predictive scheme exploits prevailing time scale 
separations between the lateral vehicle dynamics and the 
tire/wheel dynamics. The performance of the approach is 
illustrated using simulations of a medium-duty truck 
undergoing a transient handling maneuver. 

 
INTRODUCTION 
Vehicle stability control (VSC) systems reduce accident 

rates by helping drivers maintain control over the vehicle 
during emergency/aggressive maneuvers near the limits of 
tire/road adhesion[1]. Most commercial VSC systems 
accomplish this through rule-based differential braking on 
either the front or rear wheels to generate the corrective yaw 
moment needed for stabilization or for achieving driver’s 
directional intention [1, 2]. In this work, we target the optimal 
use of available tire force generation capability through optimal 
distribution of driving or braking torque to each wheel of the 
vehicle. This approach is suited to emerging electric and hybrid 
vehicles with independent drive arrangements. In[3, 4], an 
optimal yaw moment controller was proposed for such a 
vehicle. This works and others in [5, 6] first determine 
stabilizing yaw moments based on errors of actual vehicle 
responses from reference/desired yaw rates and/or lateral 
accelerations predicted using a linear model of the vehicle. The 
yaw moments are then set to be achieved with pre-determined 
torque distribution rules. 

Our approach is a model predictive control (MPC) structure 
that stabilizes the vehicle with balanced use of all tires. In 

recent years, there has been increasing interest in application of 
MPC to vehicle control. In [7-10], MPC techniques have been 
applied with steering and braking actuation to achieve path-
tracking objectives for autonomous/robotic vehicles. 
Specifically, the application of linear MPC and quadratic 
programming with linear constraints was shown to provide 
optimal performance, while maintaining sufficiently low 
computation times. In [11], MPC was proposed for vehicle 
stability control with corrective braking (no drive torque) on a 
vehicle. However, the approach described relies on the pre-
determination of a reference/desired yaw rate and side-slip 
angle using steady-state yaw rate and side slip angle gains of a 
single-track vehicle model. In [12], MPC is proposed for 
traction control systems, where the MPC objective involved 
limiting the estimated wheel slip velocity of the driven wheels 
over a selected prediction horizon. A noteworthy aspect of the 
work in [12] is the use of a piecewise linear tire-force curve for 
purposes of identifying and switching between two 
parameterized linear prediction models. Our approach of 
quantifying and using tire saturation avoids the necessity of 
switching between such models. 

In this work, we propose an MPC approach that is 
implemented as a two-level cascade to handle both the low-
level torque distribution and the high-level yaw moment 
generation by explicitly taking into account the nonlinearities 
of tire force saturation. Our approach relies on the use of 
standard sensor information readily available on-board modern 
vehicles (wheel speeds, yaw rate, lateral acceleration). We also 
rely on tire force and slip angle estimation schemes that have 
already been widely proposed and demonstrated in the 
literature. For the sake of brevity, we refer the reader to the 
following sources on the topics of longitudinal and lateral tire 
force estimation as well as estimations of slip angles and 
forward velocities [2, 13-16, 23]. In addition, our discussion 
assumes independent drive architectures that are capable of 
generating both driving and (regenerative) braking torques. 
However, with some modifications of the relevant optimization 
constraints, the ideas can be extended to brake-based systems 
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and “torque-vectoring” active differentials within conventional 
powertrains [17, 18].  

The rest of this paper is organized as follows. First we give 
the motivation and definitions for the proposed saturation 
control. Then, we discuss the mathematical details of the 
proposed cascaded predictive saturation management scheme. 
Finally, we give demonstrative simulation results and offer 
brief conclusions. 

NOMENCLATURE 
A, B, C, E  Linearized model matrices 
Aeq, Beq Equality constraint matrices 
bi Viscous wheel damping 
CD Aerodynamic drag coefficient 
Cα Lateral cornering stiffness 
Cx Longitudinal slip stiffness 
df Front track width 
dr Rear track width 
ΔEkinetic Change in kinetic energy 
Eloss Energy loss due to tires 
FMVSS: Federal Motor Vehicle Safety Standards 
Fx Longitudinal tire force 
Fy,f Front axle lateral force 
Fy,r Rear axle lateral force 
Iw Tire/wheel rotational inertia 
J Cost/objective function 
Jz Vehicle yaw inertia 
K1, K2 Tire property coefficients 
lf Distance from CG to front axle 
lr Distance from CG to rear axle 
m Vehicle mass 
Mψ Corrective yaw moment 
Q1 Instant weighting matrix for low-level MPC 
Q Expanded weighting matrix for low-level MPC 
Qα,1 Instant weighting matrix for high-level MPC 
Qα Expanded weighting matrix for high-level MPC 
Rw Tire Radius 
S Frontal Area 
Ti Individual wheel torque 
u Control input 
Δu Control input increment 
U Expanded control input for prediction 
ΔU Expanded control input increment for control horizon 
VSC Vehicle Stability Control 
Vx Longitudinal vehicle velocity 
Vy Lateral vehicle velocity 
x Predicted state vector 
y Predicted output vector 
Y Predicted output vector for entire prediction horizon 
α Lateral slip angle 
αsat Lateral tire saturation 
γ, ζ, Ω Prediction matrices 
δ Road wheel steering 
ψ yaw angle 
κ Longitudinal tire saturation 
σ Longitudinal slip ratio 

ρ Air density 
ωi Individual wheel spin 
 

DEFINITION AND MOTIVATION FOR SATURATION 
CONTROL 

 
Definition of Tire Force Saturation 

We define and interpret saturation as the deficiency of the 
tire to generate a linearly increasing tire force with increasing 
slip (Figure1).  

 
Figure 1 Definition of longitudinal tire force saturation 

Specifically, the longitudinal tire force saturation is defined 
as follows: 

     (1) 
where, σi is the tire/wheel longitudinal slip ratio; Fx,i, is the 

longitudinal tire force; and Cx,i is the slip stiffness of the tire. 
Saturation of the lateral force can be defined similarly. For the 
purposes of this paper, only the per-axle lateral force 
saturations are relevant and are defined by: 

     (2) 
where, α is the (front or rear) axle slip angle, Fy is the axle 

lateral force and Cα is the axle cornering stiffness. We again 
note that both the forces and slip quantities are assumed to be 
known via one or more of the various estimation methods, 
some of which are cited earlier.  
 
Motivation and Application to Vehicle Stability Control 

The basic notion we exploit is that saturating tires are 
inefficient in transmitting the necessary forces for stabilizing a 
road vehicle or for basic traction control. In fact, current ABS 
and TCS systems apply interventions to avoid operation in 
saturating regimes at all tires. In Limroth [19], saturation is 
treated as a discontinuous quantity whereby the first significant 
deviations from the linear projection are used as a cue to 
activate braking interventions to the axle deemed to be 
saturating. Our conjecture is that saturation can be treated as 
continuous quantity that can be optimally managed to 
efficiently use all tires on the vehicle. In our previous work[20, 
21], the differences in the lateral saturation levels between the 
front and the rear axles were used to construct a PI type yaw 
moment controller that successfully stabilized the vehicle. We 
also showed [20] that the saturation balancing approach imbeds 
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‘internal’ surface and tire-capability dependent reference 
response. In [21], we introduced the model predictive torque 
distribution strategy to optimally balance longitudinal 
saturations at the low level while working with the PI type yaw 
moment controller at the high level. In this paper, we extend 
these ideas by formulating a cascaded predictive structure that 
manages both the longitudinal and lateral saturation levels 
among all the tires to influence the directional stability of the 
vehicle.  

 
PREDICTIVE SATURATION MANAGEMENT 
 

Cascaded Predictive Vehicle Stability Control 
Figure 2 outlines the proposed scheme.  

 
Figure 2 Schematic of the cascaded predictive control 

This cascade structure is motivated for the present 
application from recognition of the fact that the system 
dynamics to be controlled by the high and low level controllers 
are of different natural time scales.  The high level control must 
have sufficient response to control the lateral dynamics of a 
vehicle (within a typical bandwidth in the range of 1-3 Hz for 
road vehicles). The low level control must sufficiently control 
the individual tire/wheel dynamics whose bandwidth is higher 
(in the range of 5-20 Hz). With this separation, the low-level 
predictive control determines the individual wheel torques in 
such away as to balance the longitudinal tire saturations, while 
the high-level predictive control determines the corrective yaw 
moment to balance the lateral saturations. 
 
Brief Review of MPC 

Model predictive control involves using the system’s 
model to predict the system’s response to suitably 
parameterized future control inputs, and make optimization 
decisions that lead to the selection of the best control inputs that 
achieve some desired objective without violating constraints 
[22]. This is illustrated using Figure 3. 

 
Figure 3 Model predictive control 

The current time is denoted by index k. The prediction 
horizon, Hp, defines the time range in which the predicted state 
is optimized by variations of the control inputs that are 
restricted to change during the control horizon, Hu. In this 
work, we take the control horizon to be equal to the prediction 
horizon. MPC uses the system model to predict the future states 
(predicted states) that enter into optimization decisions to 
obtain the optimal control sequence that minimizes a defined 
optimization objective without violating constraints. A key 
aspect of MPC is that the optimization computations are 
repeated at each control update interval so that the most recent 
measurements (actual states) and model information could be 
used. In the present application, we use (nonlinear) MPC 
methods where in addition to new measurements (or state 
estimates for slip angles and tire forces), we use local 
linearization of the tire characteristics at each control update 
cycle.  
 
Predictive Torque Distribution Control 

For this low level control, we set the control objective as 
the optimal management of longitudinal tire force saturation 
levels among all tires. At first, a strategy that minimizes the 
total level of saturation across all tires might seem like a worthy 
objective. However, the presence of distinct longitudinal 
saturations is unavoidable when using differential 
braking/driving to achieve yaw stability corrections while 
meeting forward motion demands (of driver or forward speed 
control). In this work, an alternative objective of equalizing the 
saturation levels was conceived. The cost function for this 
objective is computed as the cumulative deviation of the 
individual longitudinal saturations from their average: 

  (3) 
This can be re-written in the usual quadratic matrix form 

as: 
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 (4) 
where, is a vector of the individual longitudinal tire 

saturations, and Q1 is the constant positive semi-definite matrix 
as given.  

The above objective function shall be used in a model 
predictive framework to solve for the optimal distribution of the 
individual wheel torques that minimizes this function subject to 
certain constraints. Namely, the individual wheel torques 
should satisfy the total base torque that is commanded by the 
driver (speed control) and the corrective yaw moment required 
by the predictive high-level controller to be detailed below. 
These online computed constraints are represented by: 
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(5) 

    (6) 
where, df and dr are the track widths; Rw is the effective tire 

radius; Fx,i is the individual wheel forces; Mψ is the corrective 
yaw moment; Ti is the individual wheel torques; and Ttotal is the 
total base torque. Additional softer constraints on the increment 
of the wheel torques can be added to limit the rate change of the 
wheel torque to values achievable by the physical 
actuators/motors. 

With the above, the MPC optimization problem can be cast 
in standard form as follows: 

(7) 
 
where, the functions f and g define the predictive 

longitudinal vehicle and tire/wheel dynamics model (whose 
linearization is described below) with the longitudinal 
saturations 𝜅 as the system output; u is a vector of the four 
wheel torques; x is a vector of the system states that include the 
forward velocity, four wheel spins, and four longitudinal tire 
forces; Y is a system output matrix which is a concatenation of 
the individual tire saturations into the future prediction horizon; 
Aeq and Beq are constant matrices that define the equality 

constraints; Q and R are weighting matrices to be defined 
below.  

A key parameter of the predictive framework is the 
prediction horizon whose selection should consider the 
specifics of the physical process. In the present case, the main 
considerations include apriori unknown future exogenous 
inputs, such as the driver inputs of steering and commanded 
base torque, and the uncertainty associated with the 
linearization of the vehicle and tire models. A remedy adopted 
here is to consider a short prediction horizon (of 0.1 seconds) 
implemented in a receding horizon scheme with fast update 
cycles (of 0.01 seconds) so the most recent information of these 
inputs can be used and the effects of the linearization errors can 
be minimized. 

We now give the linearization adopted for the vehicle and 
tire model. For the forward vehicle dynamics: 

Vx =
Fx ,i

i=LF…RR
∑ − ρCDSVx ,0Vx +

1
2
ρCDSVx ,0

2

m
  (8) 

where Vx is the vehicle’s forward velocity, Fxi are the 
longitudinal tire forces; ρ is air density; CD and S is the 
vehicle’s drag coefficient and S frontal area;Vx0 is the vehicle’s 
velocity at the point of linearization (current state). For the 
tire/wheel rotational dynamics of each of the four tires:  

 
      (9) 

where, the Ti is the controlled torque, Rw is the effective 
tire radius, and bi is wheel viscous damping.  

The longitudinal tire saturation defined earlier includes the 
longitudinal tire forces. It is desirable to formulate state 
equations for these forces. The longitudinal force dynamics can 
be constructed considering that these forces are functions of 
both the vehicle speed and tire/wheel spin. Then: 

 
      (10) 

where, the coefficients K1 and K2 are determined from a 
nonlinear representation of the tire force/slip curve and partial 
derivatives of the slip ratio at the linearization point(given by 
Vx,0 and ωi,0). The gradient of the tire force with respect to slip 
ratio is a form of effective slip stiffness that can be 
implemented using a simple lookup table based on the current 
estimate of slip ratio (and possibly vertical load) at the 
linearization point. The look up table is to be obtained from tire 
test data or its analytical representations (e.g. Pacejka models).  

The defining equations of the output longitudinal 
saturations are linearized at the current states as follows: 

(11) 
Equations (8)-(11) can be written in linear state space form 

and subsequently discretized for use as the predictive model for 
MPC. Details of these standard steps are given in [23]. To 
proceed, we write the resulting model in the form: 
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   (12) 

11 ECxy kk +=+     (13) 
where, the matrices of A, B1, B2, C, and E1 are updated 

based on the linearization of the system model at each control 
update cycle. Here, y is the output vector of the longitudinal 
saturations. A distinction of this process compared to standard 
MPC (e.g., [22]) is the presence of constant matrices B2 and E1, 
which will eventually drop out of the optimization. By 
expanding the state and output vectors into the prediction 
horizon, the predicted outputs can be assembled: 
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      (14) 
In compact form: 

  (15) 
where Y and ΔU are concatenations of the predicted 

saturation outputs and wheel torque (control input) increments, 
respectively, through the prediction horizon; matrices γ, Ω, ζ, 

and  are as given in Eq (14) and are constant during one 
control update/iteration; xk and uk-1 are the current states and 
previous control inputs, respectively. 

Substituting (15) in the optimization problem (7), 
expanding, simplifying, collecting terms, and neglecting 
constant additive terms, the optimization problem reduces to a 
quadratic form given by: 

 (16) 
where, the weighing matrix Q considers the saturation 

management objective (as concatenations of Q1 given Eq(4) 

into the prediction horizon); and R is a diagonal of control 
weights which affect the soft constraint on the rate of change of 
the input torques. The equality constraints of total torque and 
corrective yaw moment given previously ((5) and (6)) can be 
expressed in terms of the control input increment for the 
prediction horizon. The steps for doing this (i.e., for extracting 
Aeq and Beq in (14)) are detailed in [23]. The optimization 
problem in (16) can be easily solved for the future wheel torque 
increments, ΔU, using quadratic optimization software tools. 
The MPC scheme updates this solution (including the 
linearization) at each control update cycle. For the torque 
distribution problem, this update is done at 100Hz (or every 
0.01sec). 
 
Predictive Yaw Moment Control 

We incorporate the definition of axle lateral force 
saturation given earlier into an appropriate performance 
measure/objective function for the high-level of the cascade in 
Figure 2. Proceeding as before, the objective is set as one of 
minimizing the deviation of the lateral axle saturation levels 
from their average. The cost function is given by: 

   (17) 
This can then be rewritten in quadratic matrix form as: 

 (18) 
where, Qα,1 is a constant positive semi-definite matrix and 

is a vector of the lateral axle saturations. The optimization 
problem for the MPC is then posed as: 
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      (19) 
where the functions p and q represent the lateral handling 

model of the vehicle used as the prediction model; U is the 
vector of corrective yaw moments over the control horizon Hu; 
Y is the lateral axle saturations expanded into the prediction 
horizon Hp; and ULB and UUB are the upper and lower bounds of 
the control input and limit the corrective yaw moment to 
physically achievable values.  

There are two structural differences of this objective 
function compared to that of the torque distribution control 
problem of the previous section. First, the penalty weight, R, on 
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the control input is applied to the absolute magnitude of the 
control input but not to the increment of control. In our 
simulations, formulations including increment terms did not 
significantly improve performance. Furthermore, there is a 
fundamentally different goal in formulating the penalty in this 
manner. In the torque distribution control, it was desired to not 
significantly change the torque unless it was necessary, while in 
the present yaw moment control we penalize any magnitude of 
the corrective yaw moment (not just its increment). Secondly, 
there are no equality constraints for the present optimization to 
satisfy, but limiting values (bounds) are selected considering 
the capability of the vehicle to be controlled. The latter may 
also be functions of peak friction coefficients. 

The predictive model we use for lateral handling dynamics 
is the usual single-track vehicle model at constant forward 
velocity: 

   (20) 

where, Vy and  are the states of lateral velocity and yaw 
rate; the FyF and FyR are the front and rear axle lateral forces; m 
is the total vehicle mass; Vx,0 is the current estimate of the 
forward velocity; Jz is the yaw inertia; lf and lr are the distances 
from the vehicle’s c.g. to the front and rear axle, respectively; 
Mψ is a corrective yaw moment to be determined by the 
predictive control. 

The lateral force is a nonlinear function of lateral velocity 
and yaw rate, which together define the axle slip angles. A 
simple first-order relaxation length model [24] was used to 
address the delay between the generation of lateral slip angle 
and the corresponding lateral force. Linearization of this force 
dynamics leads to: 

 
      (21) 

where, λF and λR are the front and rear relaxation lengths, 
respectively; fy,F and fy,R are the nonlinear functions describing 
tire lateral force versus slip angle; αF and αR are the front and 
rear axle slip angles, respectively; and δ is the road wheel 
steering angle (front steered vehicle). Substituting the 
definitions for the axle slip angles[25], the lateral axle force 
dynamics can be expressed in-terms of the yaw rate and lateral 
velocity: 

 (22) 
where, C1 and C2 are the partial derivatives of the tire force 

functions versus slip angle and represent the effective axle 
cornering stiffnesses at the operating points (current states). 
Again, these can be implemented through look up tables, and 
encompass a major simplification in the predictive model. They 
are to be updated at each iteration/update of the controller. 

For the implementation of the lateral axle saturations in the 
objective function, it is desirable to have the axle saturations as 
outputs. From the definitions of axle saturation given by Eq (2), 
the linearized front and rear axle saturations are given as 
outputs of the state-space model as follows: 

      (23) 
Using this linearized state space model, discretizing, and 

proceeding in similar steps as those used for the low level 
controller, the forward prediction can be written compactly as: 

    (24) 
where Y is a concatenation of axle saturation levels 

through the prediction horizon; U is a vector of the corrective 

yaw moments for the horizon; the matrices of γ, ζ, and  have 
similar interpretations as before. With these, the optimization 
problem for the high level control can be re-written as: 

 (25) 
This formulation is different from standard MPC 

formulations[22] due to the constants ( ) in the prediction 
model, but it merely drops out of the optimization. The optimal 
control input U that minimizes the objective can be readily 
obtained through quadratic programming methods. 

The control update interval for this high-level predictive 
control is chosen to be 0.1 sec and this is consistent with the 
short prediction horizon of the low-level control. The prediction 
horizon for the high-level MPC is chosen as 0.5 sec. For the 
optimizations conducted at each update, we assume that the 
remaining exogenous input (the steering input in the case of the 
high-level control) remains constant during the prediction 
horizon. Simulations suggest that the faster control updates 
(every 0.1 sec) help compensate for limitations of this 
assumption. 
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RESULTS AND DISCUSSIONS  
 
Test Vehicle and Maneuver 

For the purpose of demonstrating the performance of the 
proposed cascaded predictive saturation management strategy, 
we applied the strategy to a simulation model of a medium duty 
truck with a GVW of 8000 lbs and with a powertrain featuring 
independent wheel drives. This vehicle has a high center of 
gravity and easily approaches oversteer conditions during 
transient maneuvers on dry (µpeak=1.0) asphalt road. The 
mathematical vehicle model exercised in these analysis is 
described elsewhere[20]. We also adopt an open-loop “sine 
with dwell” maneuver that has been defined by NHTSA in the 
US to emulate a severe obstacle avoidance type maneuver for 
the purpose of evaluating VSC systems. This input induces a 
dynamic nonlinear response featuring high sideslip for the 
uncontrolled vehicle. The steering input and the trajectory 
response for the uncontrolled and controlled vehicle are shown 
in Figure 4. 

 
Figure 4 Road wheel steering input and controlled (blue) and 

uncontrolled(red) open-loop vehicle trajectory 

Performance of the Cascaded Predictive Stability Control 
We first show the two inputs computed online by the high-

level controller (corrective yaw moment) and the forward speed 
controller (or driver base torque) and passed as constraints for 
the low-level controller. During the maneuver, the vehicle 
speed is inevitably reduced due to the effects of lateral tire 
force components on the longitudinal dynamics of the vehicle. 
To limit the effect of the speed restoring action of the speed 
controller, the total drive (base) torque has been limited to 500 
Nm in this example (Figure 5).  However, it should be 
recognized that in some traction control systems the base torque 
is also actively reduced. We neglected this aspect to maintain 
the focus on the proposed strategy. 

For the purpose of comparison, we consider a traditional 
PI-type yaw rate reference controller [2, 20] to substitute the 
high-level predictive yaw moment controller of the cascade 
structure. We keep the low-level torque distribution controller 
the same for both. Figures 6 and 7 show some comparisons of 
the responses. 

 

 
Figure 5 Online constraints for the low-level controller using 

predictive yaw control 

 
Figure 6 Comparison of yaw-reference and cascaded 

predictive control 

It should be noted that the two high-level controllers in this 
comparison seek to accomplish two separate goals. The goal of 
the traditional yaw rate reference controller is to force the 
vehicle to obtain the desired yaw rate determined by a steady-
state yaw-rate gain. This controller does not take into 
consideration the lateral force capability of the individual axles, 
and consequently induces higher vehicle sideslip. However, the 
cascaded predictive control proposed here seeks to achieve a 
balance of lateral axle saturations and to use the lateral force 
capacity of each axle evenly.  Due to the oversteering nature of 
the example vehicle, the predictive control adds stabilizing 
moment to reduce rear axle saturation, as seen during the initial 
part of the maneuver (Figure 6 left). Conversely, the yaw 
reference controller accepts more transient oversteer and 
applies a yaw moment to induce more response in an effort to 
approach the desired yaw rate.  

It is also observed that the cascaded predictive control uses 
less actuation effort to achieve improved performance. This is 
evident in the corrective yaw moment needs in Figure 6 and the 
individual wheel torques from the low-level optimal torque 
distribution control as shown in Figure 7. We attribute this 
reduced need for actuation effort to the more efficient/balanced 
use of the available traction capability of all tires. 
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Figure 7 Optimal wheel torques under the two high-level 

controllers 

CONCLUSIONS 
In this paper, we outlined a cascaded predictive control 

structure that manages tire force saturation for the purpose of 
directional stability control of road vehicles. The approach has 
been successfully applied to a simulation model of a medium 
duty truck, where balancing saturation is shown to stabilize the 
vehicle with reduced actuation effort in independent drive 
configurations. We remark that, with some modifications of the 
constraints, it is possible to extend the approach to torque 
vectoring differentials and brake-based VSC systems. 

Finally, it should be noted that the approach proposed here 
relied on knowledge of the tire’s force generation model, 
particularly the availability of look-up tables of the cornering 
and slip stiffness characteristics with the prevailing slip 
quantities. Further work will pursue identification schemes that 
address this and other issues related to accommodating 
variability of tire characteristics with load and friction 
conditions within the cascaded predictive optimal control 
scheme. 
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